

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	TIE 0.0.1 documentation

Welcome to TIE’s documentation!

Note

The tie library is still a work in progress, and as such the api described
here is still subject to change. I’ll do my best to keep changes to a
minimum after its first release, and more importantly to reflect those
changes in the documentation if and as they happen.

Should you happen to notice any missing, outdated or plain wrong information,
feel free to contact me through github [https://github.com/raphigaziano]
or via email.

Dependencies

	None! (Besides Python, obviously. TIE has been tested with python 2.7 & 3.2,
under both Linux & Windows.)

User Guide

	Introduction
	What is TIE ?

	Do I need it ?

	Installation

	Getting Started

	Tutorial
	Part I - Simple substitution tags

	Part II - Managing your templates

	Part III - Custom Tag behaviour

	HOWTOs

API Reference

	TIE Exceptions

	Tag module

	Template module

	Processors Module

	Renderers Module

	Helpers Module

Indices and tables

	Index

	Module Index

	Search Page

TODO List

Todo

Renderer “protocol” summary

(The original entry is located in /var/build/user_builds/tie/checkouts/latest/doc/source/api/processors.rst, line 23.)

Todo

Renderer “protocol” summary

(The original entry is located in /var/build/user_builds/tie/checkouts/latest/doc/source/api/renderers.rst, line 16.)

Todo

Link to custom tags guide

(The original entry is located in /var/build/user_builds/tie/checkouts/latest/doc/source/api/tag.rst, line 84.)

Todo

LINK TO GUIDE ON CUSTOM TEMPLATES

(The original entry is located in /var/build/user_builds/tie/checkouts/latest/doc/source/api/template.rst, line 26.)

 Copyright 2013, Raphi Gaziano.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TIE 0.0.1 documentation

Introduction

	What is TIE ?

	Do I need it ?

	Installation

	Getting Started

What is TIE ?

The TIE library provides a set of classes and utilities to facilitate the
definition of very simple, personal template languages.

The library provides a basic substitution engine based on regular expressions,
which doesn’t recognize any particular syntax by itself; it’s up to the user to
provide it with his own tag patterns as well as their optional, custom
behaviour.

TIE also provides simple tools to ease the definition of those custom tags,
and aims to allow for easy customisation or extension (either by providing
callbacks or by subclassing the provided types).

Do I need it ?

Maybe. Maybe not.

If you need a full-fledged template engine,
with lots of features and good performances,
then TIE is probably not for you.
You’ll be far better off using an already established template language -
Quite a lot of them [http://wiki.python.org/moin/Templating] are already
part of the python ecosystem and have more than proven themselves.
Trying to emulate one of those with TIE might be possible,
but will surely prove very cumbersome and inneficient.

Note

If you’re looking for a lightweight, but more featured template engine, I’d
like to recommend
pyratemp [http://www.simple-is-better.org/template/pyratemp.html].
I like the author’s “simple is better” philosophy, and his
thoughts on template engines [http://www.simple-is-better.org/template/]
have been a nice source of inspiration for TIE.

On the other hand, TIE might still be overkill if your requirements are very
simple.
Python’s batteries include a very nice and quite powerful string formatting syntax,
and also provides a Template class for slightly more complex operations.
Those built-in features might be more than sufficient for what you have in mind.
(See http://docs.python.org/2/library/string.html for more info on python’s
string operations.)

TIE aims to step in when python’s built-in tools might be enough for the job,
but become too unwieldy to handle the task in a straight-forward way.

Installation

You can install TIE by simply using pip (this is the recomanded way):

pip install tie

If you must, you can also use easy_install:

easy_install tie

Alternativeley, you could also clone the project’s repository and run the
setup script:

git clone https://github.com/raphigaziano/TIE
cd TIE/
python setup.py install

Getting Started

For most basic uses, rendering a template with TIE involves 3 simple steps:

	Register your tag patterns

	Wrap your template(s) text in (a) Template object(s)

	Pass your templates the data they need to render them

A naive exemple could look like this:

>>> import tie
>>> # Register a tag pattern
>>> tie.tag.register("name")
>>> # Instanciate a Template object
>>> my_template = tie.Template("Hello, name!")
>>> # Render it!
>>> res = my_template(name="raphi")
>>> print(res)
Hello, raphi!
>>> res = my_template(name="Darth Vader, lord of the sith")
>>> print(res)
Hello, Darth Vader, lord of the sith!

Note

For testing purposes, I’m using the python 3 print function here,
but this should work just as well with the python 2.x syntax.
Adjust the code accordingly, or add a
from __future__ import print_function statement before running this code.

While this exemple is way too simple to be useful,
the basic process it illustrates should be able to handle a lot of common
situations.

Head on to the TIE tutorial to start using TIE the right way !

 Copyright 2013, Raphi Gaziano.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TIE 0.0.1 documentation

Tutorial

This tutorial aims to explain how to use TIE to create a simple, yet useful
template language. This will cover the basics of tag definition and
registration, as well as the creation of a few custom tags with specialized
behaviour, and how to easily manage them.

	Part I - Simple substitution tags
	The naive way’s shortcomings

	Regular expressions to the rescue !

	More generic tags

	Part II - Managing your templates
	Using external template files

	Register your templates to a manager

	Part III - Custom Tag behaviour

Part I - Simple substitution tags

The naive way’s shortcomings

The exemple shown in the overview might demonstrate
how simple using TIE can be, but defining tags in this way is a pretty bad
idea.

Indeed, consider what would happen if you used another template string:

>>> my_template = tie.Template("Hello, my name is name!")
>>> my_template(name="raphi")
'Hello, my raphi is raphi!'

Your name tag matched all occurences of the word “name” in your template,
which is probably not what you wanted!

And, let’s face it, this was to be expected. name is an awfull tag pattern -
In order for TIE to detect your placeholders more intelligently, they need to
contain some specific tokens that will help differentiate them from regular
words.
In order to be more flexible, TIE requires you to include those tokens in your
patterns yourself - But this also means that you should think carefully about
them to avoid that kind of confusion.

Let’s decide that our tags should be surrounded by ‘%’ characters to be detected.

>>> tie.tag.register("%name%") # Register our new tag pattern
>>> my_template = tie.Template("Hello, my name is %name%!") # Use it in our template
>>> my_template(name="raphi") # Does it work ???
'Hello, my name is !'

Well shoot. Our tag apparently matched but it got replaced with a blank string
instead of our custom data!

This is because when you call your Template
object to render it, it receives your arguments as a dictionnary
(this is the normal python behaviour for keyword arguments).
TIE’s default behaviour is then to replace each detected tag with a matching
value from this dictionnary.
If it can’t find it, it raises a warning and returns a blank string.

Warning

The behaviour described above might change in future versions.

This means that in our case, our name argument and our %name% tag don’t
match, which explains why the above code didn’t work.

But... %name% is not a valid python identifier, is it ?

>>> my_template(%name%="raphi")
Traceback (most recent call last):
 ...
 my_template(%name%="raphi")
 ^
SyntaxError: invalid syntax

Nope, it isn’t.

So, we need to define special tokens to identify our template tags,
but we can’t use non-alphanumerical characters besides the underscore ?
Well, this sucks. And I thought this library claimed to be “flexible” ?

Don’t worry. We just need to improve our tag just a little more.

Note

Experienced Python users might be thinking of building the arguments
dictionary themselves and sending it with the splat operator, like this:

my_template(**{"%name%": "raphi"}) # **Don't do this!**

This will work, but is ugly as hell.
Experienced or not, Python users shouldn’t have to write such ugly code.

Regular expressions to the rescue !

If you’ve never heard of regular expressions, then things might start to get
a bit hairy.
I’ll try to explain how the first few ones we’ll use in this tutorial work,
but you’ll need to learn more about them to use TIE efficiently.
I suggest reading this howto [http://docs.python.org/2/howto/regex.html]
from the python’s documentation to get started.
Also, while you shouldn’t need to use it directly, reading the standard library’s
re [http://docs.python.org/2.7/library/re.html#re] module’s reference might help you as well.

One of the neat things about regular expressions is that they allow you to
capture specific parts, or “groups”, of the matching string.
If you define one such group in your pattern, TIE will try to match your context
variables against it, instead of using the whole tag.

The simplest way to define a group is simply to surround in with parenthesis.
(You can also use another syntax to assign names to your groups. While this can
come in handy, there’s no real need to do so in our situation, so we’ll settle
for an anonymous group for the sake of readability.)

Let’s try this:

>>> tie.tag.register("%(name)%")
>>> my_template = tie.Template("Hello, my name is %name%!")
>>> my_template(name="raphi")
'Hello, my name is raphi!'

Hurrah! This lib might not be so useless after all!

While you can get more fancy, this is really all you have to understand to
start using TIE.
As long as you include appropriate tokens [1] in your patterns,
and remember to define a group that can match the variables names you’ll be
using in your code,
you’re ready to start defining a simple template language using arbitrary tags.

But, as far as regular expressions go, %(name)% is about as simple as it gets.
If you’ve ever used regexes, then you know that they can be far more powerful
(and far less readable ;)) than this.

Let’s see if we can tweak our tag further...

Note

It’s possible to use the re [http://docs.python.org/2.7/library/re.html#re] module’s flags in your tags’ regexes.
To do so, you’ll have to instanciate your
Tag
objects explicitely and pass them to the
register
function, instead of simply passing the regex string, like so:

import re
import tie

tie.tag.register(
 tie.Tag("^my_awesome_regex$", flags=re.FOO | re.BAR)
)

	[1]	What’s an appropriate token? Well, it all depends on the context in
which you plan to use your template tags. If generating html documents,
surrounding your tags with angle brackets (<>) might not be the best
idea...

Just take some time to think about it and use some common sense.
Typical patterns could look like the ones we’re defining in this
tutorial (%my_tag%), or like the ones used by the django and Jinja2
template engines ({{ my_tag }}).

More generic tags

So, now that we know how to define better template tags, let’s register
another one:

>>> tie.tag.register(# Notice that you can pass an arbitrary number
... "%(name)%", # of patterns to register them all at once
... "%(age)%"
...)
>>> my_template = tie.Template("Hello, my name is %name% and I'm %age% years old!")
>>> my_template(name="raphi", age=26)
"Hello, my name is raphi and I'm 26 years old!"

Yup, still works. And as a bonus, you might have noticed that we passed the
age argument as an integer value, and not as a string.
TIE is just smart enough to call the __str__ method of the objects it’s
asked to process in order to display them.
Keep that in mind if you plan on sending custom objects to your templates.

We still have to register a new pattern for every tag we want to support.
This is perfectly fine if you want to allow only a limited set of template
tags - sometimes you need tight control over what can or can’t go in your
templates, and explicitely defining each tag in this way will help you manage
what’s going on.

But still, wouldn’t it be nice if we could let TIE match any arbitrary argument
we might send it ? Get rid of the %name% and %age% tags and instead, have
some kind of generic %<var>% tag that would match whatever context argument
happened to be referenced between those two percent signs ?

Remember. While the ones we’ve used so far didn’t look like much, our tag
patterns are still regular expressions. Knowing this, and assuming you’ve
read up a bit on those, the solution becomes trivial:

>>> tie.tag.register("%(\w+)%")
>>> my_template = tie.Template("Hello, my name is %name% and I'm %age% years old!")
>>> my_template(name="raphi", age=26)
"Hello, my name is raphi and I'm 26 years old!"

The \w special sequence will match any alphanumeric character
(that is, any upper-or-lowercase letter, number, or underscore). The +
indicates that the preceding pattern should appear at least once, and can be
repeated several times. So in effect, this regular expression will match any
single word not containing fancy characters and surrounded by percent signs.
And since underscores are allowed, any valid variable name should match!

Once again, if you need to get up to date about regular expressions, I
recommend starting with the guide [http://docs.python.org/2/howto/regex.html]
from the official Python documentation.

Part II - Managing your templates

While it’s allright to define your template strings directly in your code for
very simple use cases such as the ones we’ve covered so far,
real world applications should enforce a better
separation of concerns [http://en.wikipedia.org/wiki/Separation_of_concerns]
and store their templates in external files.
Think MVC [http://en.wikipedia.org/wiki/Model-view-controller]:
Your presentation layer (which most templating systems will be be a part of)
should always be kept cleanly separated from the rest of your code.

Also, we’re dealing with very short and simple templates here.
Real world applications will probably need much larger templates, and jugling
with all those multiline strings in the middle of your code will surely prove
annoying and difficult, which is another reason why you should just store
them in external text files.

While you can certainly manage these external files yourself, TIE provides some
handy shortcuts to help you keep things nice and tidy.

Let’s have a look at those and start using some best-practices before diving in
any further.

Using external template files

Fire up your favourite editor and start designing a simple template.
I’ll use a pretty minimal one, and save it as test_template.txt:

Hello, world!
My name is %name%,
and I'm %age% years old!
Yay!

Now, back to your python code.

You could use the python builtin open() [http://docs.python.org/2.7/library/functions.html#open] function to read your new
template file and pass its contents to the
Template‘s constructor,
but the class provides a handy factory method to handle this for you:

>>> my_template = tie.Template.from_file("test_template.txt")
>>> res = my_template(name="Eddie", age=21)
>>> print(res)
Hello, world!
My name is Eddie,
and I'm 21 years old!
Yay!

Just provide a valid path to your template and it will take care of
instanciating itself from its contents,
allowing you to avoid some clutter and focus on more important stuff.

Register your templates to a manager

Since template managers are a nice, but rather optional feature, they haven’t
been implemented yet.

I do plan to add them soon, so check back in a while for them!

Part III - Custom Tag behaviour

Coming soon!

 Copyright 2013, Raphi Gaziano.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TIE 0.0.1 documentation

HOWTOs

Contents:

 Copyright 2013, Raphi Gaziano.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TIE 0.0.1 documentation

TIE Exceptions

Here are the specific exceptions TIE Might throw at you.

Warning

Only a few of those are currently used.

Error handling is still quite minimal, so this hierarchy should
not be considered stable.

Exceptions and warnings for the tie library.

	
exception tie.exceptions.TIEError

	TIE lib’s main Exception class.

	
exception tie.exceptions.TagError

	Tag related Errors

	
exception tie.exceptions.InvalidTagError

	Invalid value to register a Tag object

	
exception tie.exceptions.TemplateError

	Template related Errors

	
exception tie.exceptions.ContextWarning

	Context variables Warning

 Copyright 2013, Raphi Gaziano.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TIE 0.0.1 documentation

Tag module

The tie.tag module exposes the functions needed to manage your tag patterns,
as well as the base classes needed to customize their behaviour or the way
they will be managed in your application.

Module’s Top level Classes & Utilities

	
tie.tag.register(*tag_list)

	Register a sequence of tags.

Call this function and pass it an arbitrary number of tags to register them
with TIE.

Since your Tag list is needed by various internal parts of the TIE library,
you must use this function in order for them to have any effect. TIE
stores them in a default TagManager instance,
which you can replace if you need it to behave differently (See below).

Each tag parameter should be either a string of the tag’s regular
expression (or an already compiled regex object), or an instance
of Tag (or of any class inheriting from it).
Instanciating your Tag objects manually allows you to adjust their behaviour,
either by tweaking their default parameters or by using a custom subclass:

tie.tag.register(
 "sometagpattern",
 tie.Tag("anothertag", processor=FOO),
 MyCustomTagSubclass("taggytagtag"),
 ...
)

Internally, this function simply hands each of its parameters to the current
TagManager
and lets it handle the registration process.
Actual error checking is done in the Tag
‘s constructor.

Note

The actual arguments expected by register might vary if you decide to
use a different TagManager.
For instance, a PriorityTagManager
will expect tuples of (tag, priority).
register will simply pass each item it receives to the current manager;
see their documentation, as well as the one for any custom Tag class you
might use, to know for certain how you should register your tag patterns.

	
class tie.tag.Tag(pattern, flags=0, processor=tie.processors.sub)

	The Tag class is TIE’s central component.

It’s a somewhat boosted regular expression object, which knows how to match
itself against a given template, and modify each occurence of its pattern
within the template’s text using its internal processor function.

TIE takes care of managing and handling its registered Tag object, but
instanciating them manually allows one to change their default behaviour
by providing a custom callback as the processor argument. (Default
processors callbacks are defined in the <tie.processors> module.)

If further customisation is needed, feel free to override its public methods
in a subclass.

Parameters:

	
	pattern: Regular expression used for tag matching.

	This can be either a normal string or an already compiled
regular expression.

	
	flags: re [http://docs.python.org/2.7/library/re.html#re] module’s flags for pattern compilation.

	Pass them just as you would when using the
re.compile() [http://docs.python.org/2.7/library/re.html#re.compile] function.

	
	processor: Tag processing callback.

	Processor function should accept a match object as
their first parameter, and a dictionnary of keyword arguments
containing the context variables available for processing.

For more information about tag processors, see this
HOWTO on tags customization (once its there, that is...)

Todo

Link to custom tags guide

	
Tag.match(template)

	Find all matches in template and return them as an generator
object.

	
Tag.process(template, **context)

	Scan the template string for all occurences of the Tag and process
those using the instance’s own processor function.
Context args will be passed to the processor function.
Return a dictionnary mapping the matched tags from the template with
their corresponding values.

Note

For convenience, the Tag class is imported into TIE’s global namespace,
so you can just import tie.Tag.

Managers

TIE uses an internal manager object to keep track of every registered tag.
It will use a basic TagManager instance by default,
which should be able to handle the simplest use cases, so that you don’t have
to worry about those if you don’t need to.

It also provides a few specialized managers with commonly needed special
behaviour. If you need tighter control on how your tags should be stored and
handled, you can also define and use your own
TagManager subclass.

The tie.tag module exposes the two following functions to set or
access the current manager:

	
tie.tag.set_manager(manager)

	Set the global TagManager to manager. Only useful to setup a custom
manager.

	
tie.tag.get_manager()

	Return the global TagManager

Note

Since the register function appends the tags it
receives to the current manager, it should only be called after setting any
custom one.

Warning

Unlike Template Managers, which are completely optionnal, most of TIE’s
internal objects require a global TagManager instance to be set in order
to be able to perform their tasks. While it is possible to bypass
calling the get_manager function when using a
non-default manager if you also tweak these objects, doing so will probably
bypass most of TIE’s convenience as well.

TIE comes with the following managers:

	
class tie.tag.TagManager

	A basic Tag container to keep track of registered
tags. TIE will use this manager by default.
You can iterate over it to retrieve individual tags – Those will be yielded
in the order of their insertion:

>>> tie.tag.register('pattern2',
... 'pattern1',
... 'pattern3'
...)
>>> manager = tie.tag.get_manager()
>>> for tag in manager:
... print(tag)
...
<Tag 'pattern2'>
<Tag 'pattern1'>
<Tag 'pattern3'>

Tags are stored in a simple list, in a “private” _tag_list attribute.
Subclasses will probably need to override this attribute in order to use
other data structures.

	
TagManager.add(tag)

	Register a new tag.
Override this method to accomodate a different internal data strucutre.

This method is called by the register function.

	
TagManager.clear()

	Clear the internal tag list.
Override to accomodate a different internal data strucutre.

	
TagManager.__iter__()

	Yield contained tags.
Override to accomodate a different internal data strucutre.

	
TagManager._check_tag(tag, cls=tie.tag.Tag)

	Static method.

Internal checking method, called before inserting any tag to the
manager’s tag list.
It simply passes its tag parameter to the cls constructor if
tag is not already an instance (or subclass) of it –
This is what allows you to pass either regular strings or
Tag instances to the
register function.

Actual error handling is left to the called constructor.

You might need to override this method if you’re using fancier Tag
objects. If not, you should probably still remember to call it before
inserting your tags when redefining the
add method.

Moar specialized managers provided by TIE are listed below:

	
class tie.tag.PriorityTagManager

	Bases: tie.tag.TagManager

TagManager that keeps a priority value along its tags and yields them
in that order.

Tags with the lowest priority value will be yielded first:

>>> tie.tag.set_manager(tie.tag.PriorityTagManager())
>>> tie.tag.register(
... ('sometag', 2),
... ('othertag', 0),
... ('taggytag', 1),
...)
>>> manager = tie.tag.get_manager()
>>> for tag in manager:
... print(tag)
...
<Tag 'othertag'>
<Tag 'taggytag'>
<Tag 'sometag'>

	
add(tag)

	Register a new tag.
tag should be a tupple (tag, priority). If not, priority
will default to 0.

	
clear()

	Clear the internal tag list.

 Copyright 2013, Raphi Gaziano.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TIE 0.0.1 documentation

Template module

The tie.template module stores all the classes needed to represent your
template objects.

Note

Only the base Template class is defined in here for now.

TemplateManager basic classes will be defined here as well in a future
release.

	
class tie.template.Template(tmpl, renderer=renderers.default_renderer)

	Template objects represent your template strings and provide ways to handle
them easily.

It uses a callback function (defaulting to
renderers.default_renderer)
to handle the actual rendering, most of its public methods being convenience
wrappers around it.
Passing it another function on instantiation will allow you to alter this
default processing, but the default function should be fine for most cases.

Todo

LINK TO GUIDE ON CUSTOM TEMPLATES

Parameters:

	tmpl: Template string, containing your defined tags.

	renderer: Rendering callback.

	
Template.render(**context)

	Process the template & return the result.
context is the keyword dictionary of context variables to be injected
into the processed template.

Override this method if you need some custom behiavour that can’t be handled
by a simple callback.

	
Template.__call__(**context)

	Convenience alias for
Template.render().

This is what allows you to simply call your template objects directly:

>>> t = Template("Hello, %name%!")
>>> res = t(name="Santa")
>>> print(res)
'Hello, Santa!'

is equivalent to:

>>> t = Template("Hello, %name%!")
>>> res = t.render(name="Santa")
>>> print(res)
'Hello, Santa!'

	
Template.from_file(tmpl_path, *args, **kwargs)

	Class method.

This alternative constructor allows you to instanciate a template object
directly from an external file.

Simply pass it a valid file path instead of a template string, as well as
any other argument required by the Template constructor, and a
Template instance initialized with the specified file’s contents will
be returned.

Note

For convenience, the Template class is imported into TIE’s global namespace,
so you can just import tie.Template.

 Copyright 2013, Raphi Gaziano.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TIE 0.0.1 documentation

Processors Module

This module stores all the callback functions provided by TIE and used to
process matching tags in a template.

Note

Only one function, the default sub processor, is defined for now.

	
tie.processors.sub(match, **context)

	Default tag processor.
Returns the appropriate value from **context for a matched tag.

This processor performs a simpe substitution on the processed tag.
It will check for a value matching the current tag within the context
dictionnary and return it, or an empty string if no match was found.

Warning

The “no match found” behaviour is still undefined.
For now it simply raises a warning and return an empty value, so that the
tag will simply be suppressed.

Custom processors:

Todo

Renderer “protocol” summary

 Copyright 2013, Raphi Gaziano.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TIE 0.0.1 documentation

Renderers Module

This module stores all the callback functions provided by TIE and used to
process process a template as a whole.

Note

Only one function, the default default_renderer processor, is
defined for now.

	
tie.renderers.default_renderer(template, **context)

	Default template renderer.
Process each registered Tag and returns the whole processed string.

Custom renderers:

Todo

Renderer “protocol” summary

 Copyright 2013, Raphi Gaziano.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	TIE 0.0.1 documentation

Helpers Module

This module regroups various helper functions which you can use when defining
your custom processors or renderers.

Regular Expresssions Helpers:

The following helpers are convenience shortcuts for manipulating regex matches
when handling custom tags.

	
tie.helpers.get_single_group(match, key=1)

	Return one and only one group from the passed match object.
If no group was defined in the matched regexp, return the whole match.

Parameters:

	
	match:

	A re.match object to extract the group from.

	
	key:

	Optionnal key argument to get a specific group.
This can be either a list index or a string to get a named group.
(See the re.MatchObject.group() [http://docs.python.org/2.7/library/re.html#re.MatchObject.group] method’s documentation if you don’t know
how to get a specific group from a match object).
Defaults to 1, to return the first defined group in the matching regex.

 Copyright 2013, Raphi Gaziano.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	TIE 0.0.1 documentation

 Python Module Index

 t

 			

 		
 t	

 	[image: -]
 	
 tie	

 	
 	
 tie.exceptions	

 Copyright 2013, Raphi Gaziano.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	TIE 0.0.1 documentation

Index

 _
 | A
 | C
 | D
 | F
 | G
 | I
 | M
 | P
 | R
 | S
 | T

_

 	

 	__call__() (tie.template.tie.template.Template.Template method)

 	__iter__() (tie.tag.tie.tag.TagManager.TagManager method)

 	

 	_check_tag() (tie.tag.TagManager.TagManager method)

A

 	

 	add() (tie.tag.PriorityTagManager method)

 	

 	(tie.tag.tie.tag.TagManager.TagManager method)

C

 	

 	clear() (tie.tag.PriorityTagManager method)

 	

 	(tie.tag.tie.tag.TagManager.TagManager method)

 	

 	ContextWarning

D

 	

 	default_renderer() (in module tie.renderers)

F

 	

 	from_file() (tie.template.Template.Template method)

G

 	

 	get_manager() (in module tie.tag)

I

 	

 	InvalidTagError

M

 	

 	match() (tie.tag.tie.tag.Tag.Tag method)

P

 	

 	PriorityTagManager (class in tie.tag)

 	

 	process() (tie.tag.tie.tag.Tag.Tag method)

R

 	

 	register() (in module tie.tag)

 	

 	render() (tie.template.tie.template.Template.Template method)

S

 	

 	set_manager() (in module tie.tag)

 	

 	sub() (in module tie.processors)

T

 	

 	TagError

 	TemplateError

 	tie.exceptions (module)

 	tie.helpers.get_single_group() (built-in function)

 	

 	tie.tag.Tag (built-in class)

 	tie.tag.TagManager (built-in class)

 	tie.template.Template (built-in class)

 	TIEError

 Copyright 2013, Raphi Gaziano.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 tutorials/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TIE 0.0.1 documentation »

Tutorials

Contents:

 © Copyright 2013, Raphi Gaziano.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		TIE 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Raphi Gaziano.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/plus.png

_static/comment.png

api/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TIE 0.0.1 documentation »

 Contents:

		TIE Exceptions

		Tag module
		Module’s Top level Classes & Utilities

		Managers

		Template module

 © Copyright 2013, Raphi Gaziano.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

